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SUMMARY

An aircraft configuration, previously conceived as a means to
achieve favorable aerodynamic stability characteristics, high lift-drag
ratio, and low heating rates at high supersonic speeds, was modified in
an attempt to increase further the lift-drag ratio without adversely
affecting the other desirable characteristics. The original configura-
tion consisted of three identical triangular wing panels symmetrically
disposed about an ogive-cylinder body equal in length to the root chord
of the panels. This configuration was modified by altering the angular
disposition of the wing panels, by reducing the area of the panel form-
ing the vertical fin, and by reshaping the body to produce interference
lift.

Six-component force and moment tests of the modified configuration
at combined angles of attack and sideslip were made at a Mach number of
3.3 and a Reynolds number of 5.46 million. A maximum lift-drag ratio of
6.65 (excluding base drag) wag measured at a 1lift coefficient of 0.100
and an angle of attack of 3.6 . The lift-drag ratio remained greater
than 3 up to 1lift coefficient of 0.35. Performance estimates, which
predicted a maximum lift-drag ratio for the modified configuration 27
percent greater than that of the original configuration, agreed well
with experiment.

The modified configuration exhibited favorable static stability
characteristics within the test range. Longitudinal and directional
centers of pressure were slightly aft of the respective centrcids of
projected plan-form and side area.



INTRODUCTION

On the basis of a theoretical study of faztors influencing flight
range and aerodynamic heating at high speeds, 21 configuration for a
hypersonle glide vehicle was described and evaluated theoretically in
reference 1. This configuration consists of a rotationally symmetrical
placement of three half-delta wing panels about an ogive-cylinder body
of eircular cross section and of length equal to the root chord of the
wing panels. From the standpoint of inherent aerodynamic stability,
high aerodynamic efficiency, low heating rates, and acceptable low-speed
performance, the configuration appears attractive alsc as a supersonic
cruise airplane. Experimental measurements of the aerodynamic character-
istics of a slightly modified version at low speed (references 2 and 3)
have demonstrated favorable static stability characteristies and reason-
able performance at landing speeds and attitudes. In reference % the
longitudinal characteristics of a shortened versicn having large leading-
edge bluntness were measured at Mach numbers from 3.00 to 6.28. Static ‘
longitudinal stability was shown to be favoratle throughout the speed
range, while performance appeared to suffer significantly from the wave
drag associated with leading-edge bluntness arnd the loss in wing area
(relative to body frontal area) due to shortering.
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In the present study, a further evaluaticn of the design concept of
reference 1 is carried out at a Mach number of 3.30. The specific purpose
of the present study is to make a number of irtuitively conceived modifi-
cations to the design of reference 1 in an attempt to improve its aero-
dynamic performance while retaining the inherent stability characteristics
of the original design, and to determine experimentally the resulting
performance and static stability of the modified configuration.

NOTATTION

A1l moments are taken about the center of gravity of the model which
is located on the model axis at the quarter pcint of the mean aerodynamic
chord. This point is at the mid-length of the model. The model axis is
defined as the line in the plane of symmetry ¢f the model lying parallel
to and 0.238 inch (3.29 percent 1) below the intersection of the center
planes of the three wing panels. Symbols are defined as follows:

Amax maximum cross-sectional area of body
Ab total base area of wings and body g
b wing span (twice the distance from nodel axis to wing tip)

ol

mean aerodynamic chord of wing
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. s s axial force
axial-force coefficient, ——=——==-

aS
. . (pb B pm)Ab
coefficlent of axial force due to base pressure, — 5

. D
drag coefficient, &

drag coefficient when =D i.e., when basgse drag is zero)
Py = Do .

drag coefficient at zero angle of attack

rolling moment
gSb

rolling-moment coefficient,
3¢,
op
1ift coefficient, —%
b qS
3cy
da

itching moment
pitching-moment coefficient, pLte g _mon

gSc
30y,
oa
yawing-moment coefficient, yewing moment
gSb
30y
oB

normal force
qs

normal-force coefficient,

coefficient of incremental normal force due to interference
pressure

gide force

side~force coefficient, 35

3Cy
EQ

drag force
length of model

1lift force

(W]



M Mach number

Py base pressure

1 free-gtream static pressure

q free-stream dynamic pressure

RZ free—stream length Reynolds number, % 1

S reference area of wing,-%bl

Tp recovery temperature A
Ty temperature at model surface i
% Reynolds number per unit length ?
‘ep axial distance to center of pressure from model apex

a angle of attack

B angle of sideslip

r dihedral angle

g angle of pitch (wind-tunnel reference system)

A leading-edge sweepback angle

P angle of roll (wind-tunnel reference system)

DESIGN CONSIDERATIONS

The Original Configurat:ion

The original configuration of reference . is sketched in figure 1.
It consists of three triangular (half-delta) ivring panels symmetrically
disposed about an ogive-cylinder body of revolution. The wing root chord
is equal to the body length. In the cruising attitude one wing panel lies
in a vertical plane and acts as a dorsal fin, while the other two panels
gerve aos the lifting surfaces. The wing anhecral is thus 300. This sym- -
metricel arrangement was chosen as a means of incorporating favorable
static lateral and directional stability (low CZB, high CnB). The

theoretical advantage of such a symmetrical configuration to minimize
CZB was demonstrated by the enalysis of Maple and Synge in reference 5.
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The Present Configuration

For the present study, three major modificaticns were made to the
configuration of reference 1 in antlclpatlon of higher lift-drag ratio.
First, the anhedral was reduced from 30° to 15°. Thecretically, the 1ift
componeqb of the resultant normal force on each wing panel should incoease
to a maximum value as the anhedral 1s reduced to zerc. But as the ank ol
is reduced, the lateral component of the wing-panel normal foree, which
helps to provide lateral and directional stability, is alsc reduced. Tt
wags felt that complete elimination of anhedzal would adversely aifect Lhuse
stability components. The anhedral of l) was therelure chosen as an
arbitrary compromise.

The second modification consisted of halving the areus of the dorsazl
fin by increasing its leading-edge sweep. This was done to keep the
rolling-moment contribution of the dorsal fin (in sideslip) in balance
with that of the wings in order to minimize CZ;‘ Reducticns in heat

t

input, fricticn drag, wave drag, and weight were also realized as o conge-
guence of this modification. Determination of the area to be retained in
the dorsal fin was based on the assumption that the side-Toree contributlon
of each wing panel was cquivalent 1o that of a ventral fin having an sres
and shape equal to the projection of the wing panel in = vertical plune.

The third modification consisted of reshaping and relocating 1he body
in an avtempt to increase the lift-producing pressure interference on the
lower surfaces of the confipuration in accordance with the principles cut-
lined in references © and 7. For this purpose, the boedy was modified ond
placed entirely below the wing. The forword portion of the body consistod
of a segment of a blunted circular cone of 12° semiapex angle which
extended to 45 percent of the total length. The axis cf the cone was
tilted upward 2°. At the test Mach number, the cone bow wave was approxi-
mately coincident with the wing leading edge (at o = Oo) and the cone
pressure I'leld covered 30 percent of the total plan-form area. AfhL of
this conical segment the body was faired toward the wing surfaces to Torm
a flat-bottomed enclosure with a triangular base. Cenerous fillets were
applied tc the wing-fin and wing-body Jjunctures to decrease the probability
o boundary-layer transition at the wing roots and to reduce the wetted
surface area somewhat, while at the same time providing greater structural
rigidity and volume. Figure 2 is a sketch of this modified confiuration.
One final zlteration, not associated with the configuration desien, became
necessary on the test model. Because of strength and flexural limitations
cf the model support, its shroud could not be made small enough to lic
within the design base area of the model. To shield the shroud opening, a
fore-and-aft tunnellike fairing was added to the lower afiLersurfuce of
the model. The outline of this fairing may be seen in figure 2. Incre-
mental friction and wave drag due to the fairing were considered negli-
gible. The additional base area was included in the calculation of base
drag.



As o result of the modifications, the rotational and reflectional
symmetry of the original configuration has bzen reduced in the modified .
confijuration to the conventional single-plaie reflectional symmetry.
In view of the significant gains in estimatel performance which accompuny
this departure from symmetry, 1t was considered important in the present
exveriment to determine whether any reductiois in static lateral stability
would occur which could be attributed to the reduced symmetry.

Performance Estimates

Estimates of the performance of the orisinal and of the modified

coniijurations were made for the conditions >f the present test in order
tc desermine the improvement in aerodynamic ocerformance to be expected ¢
from “he modifications. The configuration of reference L, for which
cxperimental data are available, is clesely similar to that of reference L.
Fur comparative purposes, therefore, calculations of minimum drag were ulsc

ade for the configuration of reference L. 'The values of pertinent geo-
netric parameters c¢i these three conflguratlons may be conveniently
compared in table I. The prinecipal differences between the configpuration
o reference 1 and that of reference 4 are that the latter is somcwhat
shorter and has a considerably bLlunter wing leading edge

Minimum—drag coefficients were estimated by summing up the component
drag coeffTicients calculated by methods similar to those used in refer-
ence 1. The calculations were made for a Msch number of 3.3, a Reynclds
number, Ry, of 5.06x10% , and a surface temperature equal to recovery
temperature. In Tigure 3 the estimated component drag coefficients of
the three confijurations are compared. Friction drag is shown for both
fully luminar and fully turbulent boundary-layer flow. It is evident
that the relatively high drag estimated for the reference 4 coniiguration
is due to the high wave drag of the blunt wing leading edges. The differ-
ences in friction drag and base drag betweer the original (ref. 1) and
present configurations are small, as is the difference in total drag.
Whot the present configuration gains in rediced wave drag of the wing it
loses in increased wave drag of the lower fineness-ratio body. Part of
this increased wave drag is attributed to tre fact that the body, con-
sidered alone, is at a finite angle of attack. The measured values of
minimum total drag from the present test anc from reference L are
indicated on figure 3 by the arrows. If the estimated total drag coei-
icients are assumed to be correct, transition Reynolds numbers of roughly
1 million and 2 million are 1nferred for the present test and relerence h
respectively.

15ince toredrag only was reported in reiference L, the plutted value oif .

total drac inecludes the estimated base drag, and is the intervoelated value
Lor o Mach number of 3.30.



Performance at angle of attack was estimated by use of the following
equations:

. a cos”T + CNi - CDO@ (1)

0 =
L
NME - 1

aZcos®l + CNia (2)

which are based on linear theory and modified to account for wing dihedral
and interference normal force. To account for dihedral, the wing panels
were assumed to operate as independent flat plates. The angle of attack
cf" each panel is then equal to « cos I' and the lift component is pro-
portional to cos I'. Interference pressure on the wing due tc the body
was considered to be effective over the area bounded by the wing leading
edge (cone bow wave), the body, and the first ray of the expansicn at the
end of the conical portion of the body. Over this area the average inter-
ference pressure was taken to be the average of the pressure behind the
wave and that on the conical surface of the body. Over the remaining
porticns of the wing and body the interference pressure was assumed to be
zero. The interference normal force CNi was calculated by applying an

area-welghted average pressure to the projected area of the effective
wing-body surface. The value was calculated for zero angle of attack and
was assumed to be indevendent of «.

In figure 4 is shown the estimated performance of the original
configuration (ref. 1) together with the effects of successive modifica-
tions. The estimates are made for a Mach number of 3.3, a length Reynclds
number, Ry, of 5.46x10%, and a surface temperature equal to recovery
temperature. A transition Reynclds rnumber of 1 million was assumed, and
the base pressure coefficient was assumed to be zero (i.e., no base drag).
The unmodified configuration has a maximum lift-drag ratic of 1.95 at a
1ift coefficient of 0.095 and an angle of attack of 5.80. Reducing the
wing anhedral to 150 increases the initial lift-curve slope by about
2L percent and increazses the lift-drag ratio to 5.55. This is about
73 percent of the increase in maximum lift-drag ratic which could be
achieved by reducing the anhedral to zero. When the leading-edge sweep
of the dorsal fin is increased to remove about half of the {in area, the
drag ceoefficient is reduced and the maximum lift-drag ratic is increased
Lo 5.85, Finally, a reshaping of the body to produce favcrable inter-
Terence pressure on the wing panels, while increasing the drag coefficient
somewhat, results in a proportionately greater increment in 1if't coeffi-
cient and raises the maximum lift-drag ratioc to 6.3. The corresponding
1ift coefficient is 0.105 and the angle of attack is 3.90. The modifica-
tions, therefore, result theoretically in a 27-percent increase in maxinunm



lilt=drag ratio over that of the unmodified configuration, together with

@ slight increase in optimum 1ift coefficient and a significant decrease

in optimum angle of attack. At 1ift coefficients higher than the optimum,
tihie vstimated gain in lift-drag ratio increases percentagewisc. For
examople, at o 1ift coefTicient of 0.20 the estimated lift-drag rotic after
modlilication is 5.05, representing a 3l-percent gain over the corresponding
lizt=drog ratic of the original configuraticn,

EXPERIMENT

The Test Model

The wing panels and dorsal fin of the riodel were machined separately
o steel and then fastened with screws to a center section. The body and
"illets were of plastic and were cast directly against the assembled steel
sits. A small amount of hand fairing was required at the apex and at the
ine alorg which the plastic fillet feathercd into the steel wing. The
nores ol the plastic and the screw holes were filled with hard wax and the
medel surfaces rubbed fair; however, becausc of the relatively high turbu-
lence level of the wind tunnel, no attempt was made to produce a surface
rinish of the guality necessary te ensure that roughness would not affect
soundary-layer transition. Photographs of -~ he test model are shown in
Llgure .
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Wind Tunnel and Instrumentation

The experimental work was conducted in the Ames 1- by 3-Foot
Suvcrsonic Wind Tunnel Number 2. This wind tunnel 1s of the intermittent
nonreturn type having flexible nozzle plates which permit operation at
any one of several preselected Mach numbers between 1.5 and 3.3. Aero-
dynamic forces and momenls were measured by means of two-, three-, and
IMve-component strain-gage balances. Static pressures at the base of the
modecl were measured with a mancmeter filled with a low-density cil.
During: the tests the model and flow fleld wore observed and photographed
oy mumns of a schlieren system. Two represcntative photographs are shown
in figure €.

Test Conditions and Measirements

The Much number of the air stream at thie model location was 3.30
+0.02. Reynolds number in the free stream wvas 5.% million, based on the
nodel lencth. The model surface temperaturs: was that of an insulated
surlace.

TR L0 e
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Aerodynamic forces and mcments acting on the model were measured at
combined angles of pltch and roll For each of five roll angles, nomlnally
0%, 22-1/2°, 45°, 67-1/2°, and 90°, the model was pitched at 1° and 2
increments between approximately lco and +18° To assess the small
effects of stream angle and of residual trim due to model 1mperfectlons,
the model was also tested at nominal roll angles of 180° ana 2,0

Data Reduction and Precision

The primary data were measured as functions of 8 and ®, the angles
of pitch and roll, respectively. These data, in coefficient Torm, were
plotted in families of curves as functions of 6 for several values of Q0.
To obtain the coefficients as functions of « and B, the angles of attack
and sideslip, respectively, these angles were first determined at every
model orientation, in terms of 6 and ¢, from the test geometry. The
primary data were then cross-plotted independently - first as functions
of a at various B, and then as functions of B at various a - giving
two families of curves. Throughout the presentation all primary data
points appear as filled symbols while all cross-plotted points appear as
open symbols. Finally, the fairings of the two curve families were iter—
ated to achieve mutual consistency. It is thus possible to estimate the
accuracy of the cross-plotting procedure by observing the departure of
the iterated curves from the filled symbols, and the departure of the
cpen symbels from the iterated curves.

The precision of the primary data was estimated on the bhasis of the
sensitivity and repeatability of the gages and read-out equipment, and
the degree of uncertainty of the dynamic-pressure measurements. The
estimated limits of error in the aerodynamic coefficients are tabulated
below:;

Cy £0.00k4 Cn  #0.002
Cn +.002 Cy +,0002
Cp (a~0®) +.0006 Cr, +,00k
Cp  (a~129) +.001 cp  (a~0?) +.,0006
Cy +.002 ¢y (a~12°) +. 0024

Angles of pitch and roll were measured within +0.2°. Pitch-angle
measurements were adjusted to account for a stream angularity of -0.2
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RESULTS AND DISCUSSION

Primary Data

The primary-force measurements, reduced to coefficient form in the
body-axis system, are presented in figure 7, in which the coefficients
are plotted versus angle of pitch for a constant angle of roll. With the
exception of the coefficient of axial force due to base pressure, CAb,

thege data are subsequently cross-plotted. For all the model attitudes
tested, the value of CAb remained approxirately constant at 0.00h.

Aerodynamic Characteristics at Zero Sideslip

Lift coefficient is plotted versus angle of attack, pitching-moment
coefficient, drag coefficient, and lift-drag ratio in figure 8. The angle
of sideslip, B, is zero for these data. Curves of lift-drag ratio are
shown based both on total drag and on foredrag (total drag minus base
drag). The 1lift coefficient at maximum lift-drag ratio (based on total
drag) is 0.125, and the corresponding angle of attack is &.TO. The
pitching-moment coefficient is linear withir the range of measurement.

The maximum lift-drag ratio of the model in the upright attitude

(positive a) is greater than that in the irverted attitude (negative a)
by 8 percent when based on total drag, and ty 20 percent when based on
foredrag. It is significant that at 1ift ccefficients as large as 0.3)
(angles of attack up to 15.30) the lift-drag ratio remains greater then 3.

In figure O the measured lift-drag ratio is compared with the
estimated L/D of the test model and with experimental results from
reference !t, The lift-drag ratios are basec on foredrag coefficient.
There is a small increase in the predicted L/D plotted here over that
shown in figure & dué to the sharper leading edge of the test model.
Interference lift at zeroc angle of attack, (rag, and lift-drag ratio are
predicted satisfactorily by equations (1) ard (2), while initial 1ift-
curve slope and lift are somewhat underestinated. At a 1ift cocefliclent
of 0.20 the estimated lift falls about 5 percent below the experimental
curve.

Comparison of the present results with those of reference b4 (I = -15%)
shows significantly higher lift-drag ratios for the present configuration.
The lower zero-lift drag of the present model is due largely to the smaller
leading-edge bluntness while the higher 1ift coefficient at a given « 1is
due largely to favorable pressure interfererce, although the aspect ratio
is significantly greater also. The present model has a higher BCm/BCL
than does the configuration of reference 4, It has a positive Cp at -

a = 0° and therefore requires less trimming moment to fly at 1lift

D e 1>
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coefficients less than 0.2. This result is also attributed tc the
difference in leading-edge bluntness and to favorable pressure interference
on the present configuration.

Aerodynamic Characteristics at Combined Angles

Longitudinal characteristies.- The variations of normal-force
coefficient, pitching-moment coefficient, and axial-force coefficient
with angle of attack at several constant angles of sideslip are presented
in figure 10. The variations of these coefficients with angle of sideslip
at several constant angles of attack are shown in Tigure 11. Within the
range of angles covered in the test, the effects of sideslip on the
longitudinal characteristics are small. Examination of figures 11(a) and
11(c) indicates that no reduction in L/D should occur for moderate
departures of [ from zero.

Longitudinal derivatives and center-of-pressure position are presented
as functions of sideslip angle in figure 12. The curves were derived from
slope measurements of the curves of figures 8 and 10. Figure 12 shows
that the initial lift-curve slope (a = OO) is virtually invariant with 8
in the range of measurement. The predicted initial lift-curve slope,
obtained by differentiation of equation (l), is smaller than the measured
value by approximately 10 percent as shown in the figure. The longitudinal
center of pressure remains nearly fixed at combined angles of attack and
sideslip when « 1is zero or positive, and at negative angles of attack
when £ 1is zero (fig. 12). At negative angles of attack there is a more
pronounced forward shift of the center of pressure with increasing B.

When compared to the centroid of area of a triangular wing ((2/3)1) and
to the positions shown for the configurations of references 3 and M, the
center of pressure of the present configuration lies relatively far aft.
This fact contributes to its comparatively high level of longitudinal
stability.

Lateral and directional characteristics.— The variations of rolling-
moment coefficient, yawing-moment coefficient, and side-force coefficient
with angle of sideslip at several constant angles of attack are plotted in
figure 13. The variations of these coefficients with angle of attack at
several constant angles of sideslip are shown in figure 14. Figures 13(a)
and 14(a) indicate that rolling moments remain relatively small and have
regular variation within the range of angles of the test. Note that the
usual sign convention is used here - positive rolling moment is a clock-
wise moment when the airplane is viewed from the rear.

The model 1s directionally stable at all angles and has relatively
linear yawing-moment characteristics at positive angles of attack. It is
evident in figure 14(b), however, that with increasing negative o« these
characteristics become significantly nonlinear, possibly as the result of
flow separation from the leading edge of the forward wing.



Lateral and directional derivatives anc¢ center-of-pressure position
are presented as functions of angle of attack in figures 15 and 16. 'These
curves were derived from slope measurements of the curves of figure 13.
The lateral stability with respect both to tody axes and to stability axes
is plotted in figure 15.

With respect to body axes, the model exhibits increasing positive
effective dihedral with increasing positive angle of attack, and increasing
negative effective dihedral with increasing negative angle of attack.

About the stability axis the mocdel exhibits qualitatively the same charac-
teristic for angles of attack greater than sbout -4°, At more negative
angles of attack the effective dihedral decreases until at o = —9.50 it
appears to become negative. The fairly small values of C, measured

for the present model appear to validate the design criterion (discussed
previously) used for reducing the area of tle dorsal fin to compensate
for the reduced anhedral. Small changes in anhedral or fin leading-edge
sweep angle should prove an effective means of tailoring the lateral
stability characteristics to fit given requirements for configurations of
this type.

The directional stability of the model (fig. 16) deteriorates with
increasing positive angle of attack and improves with increasing negative
angle of attack. This result is in accord vith the expected effectiveness
of the dorsal fin as the angle of attack is varied. At o = 120, the
directional stability is about 60 percent of the value at a = o°. At
the cruising angle of attack of M.YO, an is about 85 percent of the
value at o = 0°.

The directional center of pressure wher sideslip is zerc is very
close to (2/3)1 at a = 0° (fig. 16) and noves slowly forward as a
departs from zero., At positive angles of attack, the directional center
of pressure remains 3 or 4 percent of 1 fcrward of the longitudinal
center of pressure.

CONCLUDING REMARKY

Comparison of the experimental results with the estimated performance
of the modified configuration indicates that, in general, the expected
aerodynamic benefits of the modifications were realized. The experimental
maximum lift-drag ratio of 6.65 (excluding tase drag) at a lift coeffi-
cient of 0.100 and angle of attack of 3.6° s in good agreement with the
estimated maximum lift-drag ratioc. This liit~drag ratio is 31 percent
higher than that estimated for the ummodific¢d configuration. The experi-
m=ntal results further indicate that within the range of angles of the
test the static stability characteristics oi' the modified configuration
are favorable, The positions of the longitudinal and lateral centers of

oW
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pressure are weakly dependent on attitude and in general remain slishtly
aft of the respective centroids of projected plan-form and side area.
While there are no stability data at supersonic speeds for the original
configuration (other then Cm  at B = 0° from ref. L) with which to

make a comparison, 1t seems clear on the basis of the present results
that little, if any, deterioration of desirable static stability charac-
teristics has been suffered as a result of the loss of rotational and
reflectional symmetry due to the design modifications.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., May 6, 1960
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Figure 3.- Estimated drag coefficients at zero angle of attack; M = 3.30,
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(a) View from above.

(b) View from below.

Figure 5.- Photographs of test model.
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a = 12.50

Figure 6.- Schlieren rhotographs of

the test model; g = O
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Figure 7.- Static aerodynamic characteristics in coumbined pitech and roll.
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Figure 13.- Variations of static lateral and directional charcteristies
with angle of sideslip at several angles of attack.
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